A Markov Chain Monte Carlo Approach to Stereovision
نویسنده
چکیده
We propose Markov chain Monte Carlo sampling methods to address uncertainty estimation in disparity computation. We consider this problem at a postprocessing stage, i.e. once the disparity map has been computed, and suppose that the only information available is the stereoscopic pair. The method, which consists of sampling from the posterior distribution given the stereoscopic pair, allows the prediction of large errors which occur with low probability, and accounts for spatial correlations. The model we use is oriented towards an application to mid-resolution stereo systems, but we give insights on how it can be extended. Moreover, we propose a new sampling algorithm relying on Markov chain theory and the use of importance sampling to speed up the computation. The efficiency of the algorithm is demonstrated, and we illustrate our method with the computation of confidence intervals and probability maps of large errors, which may be applied to optimize a trajectory in a three dimensional environment.
منابع مشابه
Spatial count models on the number of unhealthy days in Tehran
Spatial count data is usually found in most sciences such as environmental science, meteorology, geology and medicine. Spatial generalized linear models based on poisson (poisson-lognormal spatial model) and binomial (binomial-logitnormal spatial model) distributions are often used to analyze discrete count data in which spatial correlation is observed. The likelihood function of these models i...
متن کاملA mixed Bayesian/Frequentist approach in sample size determination problem for clinical trials
In this paper we introduce a stochastic optimization method based ona mixed Bayesian/frequentist approach to a sample size determinationproblem in a clinical trial. The data are assumed to come from a nor-mal distribution for which both the mean and the variance are unknown.In contrast to the usual Bayesian decision theoretic methodology, whichassumes a single decision maker, our method recogni...
متن کاملA Stochastic algorithm to solve multiple dimensional Fredholm integral equations of the second kind
In the present work, a new stochastic algorithm is proposed to solve multiple dimensional Fredholm integral equations of the second kind. The solution of the integral equation is described by the Neumann series expansion. Each term of this expansion can be considered as an expectation which is approximated by a continuous Markov chain Monte Carlo method. An algorithm is proposed to sim...
متن کامل